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Abstract
The effects of transverse field and a single defect on the conductance of an
achiral carbon nanotube have been investigated. It is found that armchair
nanotubes under the transverse field are always metallic, and that field-induced
metal–semiconductor (MS) and semiconductor–metal (SM) transitions are
shown for zigzag nanotubes. MS transition fields are independent of the defect
while SM transition fields are sensitive to the field-defect azimuth, defect type
and its strength. Most importantly, the field-defect azimuth is a new freedom
and can be used to tailor and control the electronic behaviour. The experimental
confirmation of the prediction may be possible.

Single-walled carbon nanotubes (SWNTs) have attracted much attention because of their
remarkable electronic properties and great potential applications for nanoscale devices. A
variety of electronic devices based on SWNTs with use of gate and bias voltages, for instance,
single-electron transistors [1], field-effect transistors [2], and diodes [3], have been built
experimentally. It is well known that magnetic field [4] and mechanical deformation such
as squashing, bending, and stretching [5, 6] can modulate the electronic properties of SWNTs.

Recently, effects of a transverse electric field, which is easy to control in practical
applications, on the electronic structures of perfect SWNTs have been investigated [7–10].
It has been found that the transverse field uniformly changes the bands along the tube axis and
substantially modifies transport properties of SWNTs, such as the metal–semiconductor (MS)
and semiconductor–metal (SM) transitions [8, 10]. However, the tubes are rarely as perfect as
they were once thought to be. Various types of defects such as topological defects, impurities,
and vacancies substantially modify the electronic properties of SWNTs [11–17]. The presence
of defects locally alters the band structures of SWNTs. This has been confirmed by several
experiments. For example, scanning tunnelling microscope (STM) measurements on bulk
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nanotube ‘mats’ suggest that the defects can locally alter electronic properties [16]. Current
rectification in a molecular diode consisting of a semiconducting SWNT and an impurity results
from the local effect of the impurity on the tube’s band structures [17].

An interesting question arises. How do a few defects, in particular a single defect which
can induce a local field, modulate the electronic and transport properties of SWNTs combined
with the transverse field effects? Two cases, we believe, can appear under the resultant field
of the transverse and local fields. One is that a local defect cannot make the density of states
at the Fermi level EF zero and the defective tube is still metallic as the perfect tube under the
field is in a metallic state. The other is that the local band change induced by the defect can
make the valence band touch the conduction band as the perfect tube under the field is in a
semiconducting state with a small gap. In that case, the conduction band is filled by electrons,
namely, the local density of states (LDOS) at EF is finite, and then the defective tube can
change from a semiconducting to a metallic state. Moreover, for the tube under the field, a
single defect can introduce a new freedom, i.e., the defect azimuth related to the field direction.
Therefore, it is interesting and important to study the transverse-field and field-defect azimuth
effects on the conductance.

In this paper, the conductance and LDOS of perfect and defective achiral SWNTs with
the chiral angle θ = 0◦ (zigzag) and θ = 30◦ (armchair) under a transverse field are
studied by a tight-binding (TB) Green function method, which is effective and suitable for the
studies compared with the others [8, 10, 14]. Some new phenomena, such as the chiral-angle
dependence of the MS transitions and the field-defect azimuth effects on the SM transitions,
are found. The device archetype is as follows: an achiral SWNT without or with a single
defect is placed in between two parallel plate electrodes. These plate electrodes can produce
a uniform transverse field. In order to better study field-defect azimuth effects on the SM
transitions, we rotate the electrodes or the SWNT continuously around the tube axis so that
field-defect azimuth can be continuously changed. On the other hand, the uniform transverse
field can also simply represent the effects of gate voltage in the field-effect transistors [7, 8].

A π-band TB model is used to describe the electronic properties of SWNTs close to EF.
Within this one-band scheme the energies are usually written in terms of the overlap integral
γ0, which is set to 2.6 eV as determined by experiments [18]. The Hamiltonian of the whole
system can be written as

H (F, φF, φD) = H0 + H1(F, φF) + wH2(F, φF, φD), (1)

where F , φF and φD are, respectively, the transverse field strength, the transverse field azimuth
and the defect azimuth. w = 0 (w = 1) corresponds to the perfect (defective) SWNT. H0 is
for the perfect SWNT without the transverse field, which is described by the TB model with
one π electron per atom as

H0 = −γ0

∑

〈i, j〉
a+

i a j + c.c. (2)

where the sum in i , j is restricted to nearest-neighbour atoms. The transverse field changes the
electrostatic potential of carbon atoms in the cylindrical surface of the SWNT, and the on-site
energies of carbon atoms can be written as

(H1)i,i = −eRF cos(φi − φF), (3)

where e is the electron charge, R is the tube radius, and φi is the azimuth of the i th carbon
atom. The off-diagonal terms of H1 can be neglected [7]. H2 is for a single defect,

H2 = H 0
2 − eRF cos(φD − φF), (4)
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where the first term H 0
2 represents the defect term without the field, and the second term is

for the defect in the transverse field. The defects studied here include a Stone–Wales defect
(pentagon–heptagon-pair defect), a substitutional impurity such as boron and nitrogen, and
a vacancy. The Stone–Wales defect can be obtained by rotating one of the C–C bonds by
π/2, resulting in the transformation of four nearby hexagons into a pair of heptagons having a
common side and separating two pentagons [13]. A substitutional impurity can be simulated
by a parameter: the impurity strength U [13, 15], i.e., H 0

2 = Ua+
0 a0. Here, we set U = 3γ0

(−5γ0) to simulate a boron (nitrogen) substitutional impurity by fitting the conductance and
LDOS which were obtained by a type of ab initio calculations [14]. For a vacancy, a carbon
atom is taken from the SWNT and the bonds related to the carbon atom are interrupted.

In order to calculate the conductance and LDOS, the whole system can be considered as a
left-lead–conductor–right-lead configuration. The left and right leads are semi-infinite perfect
achiral SWNTs, and the conductor is a finite region without or with a single defect. Within
the Landauer formalism [19], the conductance G(E) can be calculated as a function of the
incident energy E ,

G(E) = G0 Tr(�LGr�RGr+), (5)

where G0 (=2e2/h) is the conductance quantum and �L(R) is the coupling matrix between
the left (right) lead and the conductor. Gr is the retarded Green function which can be written
as [19]

Gr = (E − HC − �L − �R)−1. (6)

Here HC is the Hamiltonian matrix of the conductor that represents the interaction between the
atoms in the conductor, and �L(R) is the self-energy function that describes the effect of the
left (right) lead, which can be calculated from a surface Green function matching technique as
shown in [15]. Once �L(R) is known, �L(R) is easily obtained as [19]

�L(R) = i[�L(R) − �+
L(R)]. (7)

Finally, the averaged LDOS for the j th unit cell from the left boundary of the conductor is
calculated from the relation

LDOS j (E) = − 1

Nπ
Im[Tr(Gr

j, j(E))], (8)

where N is the number of carbon atoms per unit cell, and Gr
j, j is the Green function of the j th

unit cell.
First, the conductance at the Fermi level G(EF) (EF = 0) for perfect and defective

achiral SWNTs under the field has been calculated and compared. The defects studied here
include a Stone–Wales defect (pentagon–heptagon-pair defect), a substitutional impurity such
as boron and nitrogen, and a vacancy, placed on the surface of SWNTs under the field with
φ = φD − φF = 0◦. As shown in figure 1, the variation of the conductance with the field for
the armchair (10, 10) tube shows a significant difference from that for the zigzag (18, 0) and
(28, 0) tubes. The conductance of the perfect (10, 10) tube increases with |F | by the step of
4G0 while that of the defective (10, 10) tube shows some dips due to the defects, but the drop
is not so large that the tube is still metallic. For the zigzag SWNTs, however, the conductance
oscillations can appear. With increasing field, the MS and SM transitions, and then the SM
and MS transitions, appear for the (18, 0) and (28, 0) tubes, respectively.

The reason why the (10, 10) tube is still metallic under the field can be understood as
follows. For the perfect (10, 10) tube under the transverse field, the π and π∗ bands remain
having opposite parities and then accidentally degenerate at EF. As |F | < 0.15 V Å−1, G(EF)

is always equal to 2G0. As |F | > 0.15 V Å−1, the other degenerate bands without the certain
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Figure 1. The transverse-field and defect effects on the conductance G(EF) for the (10, 10), (18, 0),
and (28, 0) SWNTs. The thick dotted line corresponds to perfect SWNTs. The solid and dashed
lines respectively correspond to SWNTs with a nitrogen impurity and a boron impurity in (a), and
to SWNTs with a vacancy and a Stone–Wales defect in (b).

parity can mix and cross at EF, and then this contributes 4G0 to the conductance. Even though
the presence of a single defect under the field results in the mixture of the π and π∗ bands [15],
one of two eigenchannels with F < 0.15 V Å−1 is completely transmitted while the other is
affected by the defect, and thus the minimal conductance is 1G0. As F > 0.15 V Å−1, the
influence of the defect is similar.

For a metallic (3n, 0) tube, the perturbation of the field opens a gap Eg ∝ (eRF)2/γ0 in
two degenerate bands without the parity. Here we should note that there is a small gap induced
by the curvature in the (3n, 0) tube [20]. However, it is much smaller than the maximum gap
induced by the transverse electric field obtained in our calculation. Therefore, our π-electron
tight binding calculation is still suitable to give a qualitative insight of the transverse field
induced gap oscillation. As shown in figure 2(a), the gap of perfect (3n, 0) tubes oscillates
with increasing F and strongly depends on R. As F < F1,max where the gap reaches the first
local maximum, the calculated results can be fitted by the scaling relation

Eg = 0.177(eRF)2/γ0. (9)

For the sake of convenience, we denote the first SM transition field for metallic
(semiconducting) perfect and defective zigzag tubes as FMP and FMD (FSP and FSD),
respectively. In the inset of figure 2(a), it is clearly shown that FMD and FMP decrease with
increasing R.

Moreover, Eg of the perfect (3n ± 1, 0) tubes, as shown in figure 2(b), decreases with
increasing F and approaches zero at F = FSP, and it is in good agreement with the results
for Eg and FSP = 0.21 V Å−1 for the (17, 0) tube obtained by first principle calculations [8].
However, the small oscillations of Eg do appear as F > FSP. FSP is respectively equal to
0.636 V Å−1 and 0.141 V Å−1 for the (10, 0) and (28, 0) tubes. FSD and FSP also decrease
with increasing R as shown in the inset of figure 2(b).
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Figure 2. Eg as a function of R F for perfect (a) (3n, 0) and (b) (3n ± 1, 0) zigzag SWNTs. The
solid line in (a) corresponds to a fit of 0.177(eR F)2/γ0. FMP (FMD) and FSP (FSD) as a function
of R for perfect zigzag tubes (defective ones with a nitrogen impurity) shown in the insets of (a)
and (b), respectively.

As shown in figure 1, the additional defect does not affect the MS transition fields when the
tubes are in a metallic state; however, the defect under the field can induce new SM transitions
when the tubes are in a semiconducting state. In the perfect (18, 0) tube, [FMP (V Å−1),
G(EF) (G0)] is [0.146, 4.0]. In the defective (18, 0) tube, [FMD (V Å−1), G(EF) (G0)] is
[0.072, 0.05], [−0.103, 0.13], [0.072, 0.94], and [0.146, 3.2] for a nitrogen impurity, a boron
impurity, a Stone–Wales defect, and a vacancy, respectively. In the (28, 0) tube, [FSP (V Å−1),
G(EF) (G0)] is [0.141, 4.0] while the corresponding [FSD (V Å−1), G(EF)(G0)] is [0.045,
0.41], [−0.105, 0.90], [0.032, 0.44], and [0, 0.32]. It is clearly shown that the first SM
transition field and the corresponding conductance of defective zigzag tubes are smaller than
those of the corresponding perfect ones and strongly dependent on the defect type and strength.
Furthermore, FSD (FMD) for a impurity with U is exactly equal to −FSD (−FMD) for a impurity
with −U , and then the larger |U | is, the smaller |FMD| and |FSD| are.

To better understand the effects of the resultant field of the transverse and local fields on
the local band change related to the conductance of zigzag SWNTs, the LDOS at several typical
fields has been calculated for the perfect (28, 0) tube, the defective (28, 0) tube with a nitrogen
impurity and that with a boron impurity, respectively. In figure 3, the gap of the perfect (28, 0)
tube decreases with |F | and reaches zero at FSP = 0.141 V Å−1. For the defective (28, 0) tube,
the LDOS curves become asymmetric with respect to EF = 0. The LDOS peaks induced by
the defect reach EF at FSD, and then the SM transitions appear. As F changes from FSD, these
peaks move away from EF. Because the LDOS peaks are very narrow, the range of the field
for the metallic state is small as shown in figure 1.

Now, we explore how the field-defect azimuth φ affects the first SM transition field and
the corresponding conductance. Noting that

H (F, φF, φD) = H (F, φ) = H (F, 360◦ − φ), (10)

we only consider the case of 0◦ � φ � 180◦. The field-defect azimuth effects are clearly
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Figure 3. The LDOS as a function of the energy for the (28, 0) tube with a nitrogen impurity (left),
without impurities (middle) and with a boron impurity (right) at several typical field strengths.

shown in figure 4(a). FMD and FSD at φ are respectively exactly equal to −FMD and −FSD at
180◦ − φ because of H (F, φ) = H (−F, 180◦ − φ). For the sake of clarity, we have plotted
the FMD and FSD respectively for the (18, 0) and (28, 0) tubes with a nitrogen impurity as a
function of φ in the range [0◦, 90◦] in figure 4(b), and plotted the corresponding G(EF) in
the same range in figure 4(c). Some unusual features are clearly shown. FMD (FSD) and the
corresponding G(EF) increase monotonically with increasing φ, and reach a maximal value at
φ = 90◦. The maximal changes of SM transition fields induced by a defect are at φ = 0◦ and
are defined as �Fmax = FMP − FMD(φ = 0◦) and �Fmax = FSP − FSD(φ = 0◦) for (3n, 0)

and (3n ± 1) tubes, respectively. It is found that for the zigzag tubes, the changes �F(φ) of
SM transition fields induced by the defect approach

�F(φ) � �Fmax cos φ with φ < 40◦. (11)

Moreover, the G(EF) at FMD (FSD) increases with R. For zigzag tubes including a nitrogen
impurity with φ = 30◦, for example, [FMD (V Å−1), G(EF) (G0)] are [0.082, 0.454] and
[0.025, 0.736] for the (18, 0) and (39, 0) tubes, and [FSD (V Å−1), G(EF) (G0)] are [0.058,
0.518] and [0.037, 0.719] for the (28, 0) and (38, 0) tubes. In fact, our further calculations
indicate that the field-defect azimuth effects on the conductance of zigzag SWNTs with two
defects (and even more) do exist. For the zigzag tubes with the two same defects on the
opposite positions, i.e., φ = 0◦ and 180◦, the conductance curve is symmetric with respect to
EF = 0, and the SM transition fields and the corresponding G(EF) are independent of the sign
of U . We have also calculated the changes of SM transition fields induced by multiple defects
with a fixed distribution and found the similar relations

�F(φm) � �Fmax cos φm with φm < 40◦ (12)



Transverse-field and defect-azimuth effects in achiral carbon nanotubes 4635

Figure 4. (a) The conductance G(EF) of the (28, 0) tube with a nitrogen impurity as a function
of the field for φ = 0◦, 10◦, 20◦, . . . , 180◦ . The thick solid line corresponds to φ = 90◦ . (b), (c)
FMD (FSD) and the corresponding G(EF) for the (18, 0) ((28, 0)) tube with a nitrogen impurity as
a function of φ. The dashed lines in (b) and (c) represent the corresponding values of perfect ones.

where we set up φm = 0◦ for the azimuth at which the changes are equal to �Fmax. Therefore,
we conclude that the resultant field of the transverse field and the local field induced by multiple
defects with some distribution can uniquely determine the azimuth dependence of G(EF) and
SM transitions.

Compared with the results obtained by first principle calculations [8], the present calculated
results and related phenomena are quite reasonable in the range of F < 0.2 V Å−1 even though
the simulation method is not completely accurate within the TB model. Furthermore, the first
SM transition fields of perfect SWNTs decrease with the increasing R and are much larger
than those of the corresponding defective SWNTs. This makes the method used here more
suitable for the studies of larger defective SWNTs. For the SWNTs with and without vacancies
under strong transverse fields (F � 0.2 V Å−1), however, it is interesting to use the ab initio
approaches to determine a more precise LDOS and how large structure relaxation effects
are on the conductance. It may, we believe, be possible to choose defective zigzag tubes to
experimentally confirm the present prediction and to check both the TB model calculations
and ab initio approaches.

In summary, we have shown the transverse-field and field-defect azimuth effects in achiral
SWNTs, and arrived at the following conclusions. (1) MS transitions are dependent on the
chiral angel θ . Armchair SWNTs (θ = 30◦) are still metallic under a transverse field while
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metallic zigzag tubes (θ = 0◦) can become semiconducting under the field. (2) The energy
gaps of zigzag SWNTs oscillate with the field and can be modulated by the defect. (3) The field-
induced MS and SM transitions are shown for zigzag SWNTs. The first SM transition field and
the corresponding conductance can be greatly changed by the defect and both of them are very
sensitive to the tube radius, the defect type and its azimuth. Finally, it is worthwhile to point out
that a defective zigzag SWNT introduces a new freedom φ, and the electronic structures and
transport properties can be tailored and controlled by using the field-defect azimuth effects.
The unique behaviour of defective SWNTs under the field is useful for potential applications in
novel nanodevices. It is also important to experimentally confirm the prediction and to further
study the θ - and φ-dependence of MS and SM transitions obtained by different models and
calculation methods. This is an open subject.
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